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Abstract: Remote sensing data proved to be a valuable resource in a variety of earth science
applications. Using high-dimensional data with advanced methods such as machine learning
algorithms (MLAs), a sub-domain of artificial intelligence, enhances lithological mapping by
spectral classification. Support vector machines (SVM) are one of the most popular MLAs with
the ability to define non-linear decision boundaries in high-dimensional feature space by solving a
quadratic optimization problem. This paper describes a supervised classification method considering
SVM for lithological mapping in the region of Souk Arbaa Sahel belonging to the Sidi Ifni inlier,
located in southern Morocco (Western Anti-Atlas). The aims of this study were (1) to refine the
existing lithological map of this region, and (2) to evaluate and study the performance of the SVM
approach by using combined spectral features of Landsat 8 OLI with digital elevation model (DEM)
geomorphometric attributes of ALOS/PALSAR data. We performed an SVM classification method to
allow the joint use of geomorphometric features and multispectral data of Landsat 8 OLI. The results
indicated an overall classification accuracy of 85%. From the results obtained, we can conclude that
the classification approach produced an image containing lithological units which easily identified
formations such as silt, alluvium, limestone, dolomite, conglomerate, sandstone, rhyolite, andesite,
granodiorite, quartzite, lutite, and ignimbrite, coinciding with those already existing on the published
geological map. This result confirms the ability of SVM as a supervised learning algorithm for
lithological mapping purposes.

Keywords: machine learning algorithms; Landsat 8 OLI; Sidi Ifni inlier; ALOS/PALSAR;
supervised classification

1. Introduction

Lithology is closely related to many important issues such as geological disasters, mineral storage,
and oil reservoirs. Satellite remote-sensing data and advances in digital image processing (DIP)
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techniques provided a new impulse to the development of lithological mapping. Spectral data
from space and airborne sensors were widely applied to geological mapping, including lithological
discrimination [1–8], structural mapping [9], hydrothermal alteration [10–12], and economic mineral
deposits [13–17]. Because of their cost effectiveness, especially in mapping inaccessible areas [4,18–20]
and in the production of small-scale maps, remote-sensing methods provide a good alternative to
traditional field work [21]. In geological areas, remote sensing is based on differences in the physical
and chemical properties of rocks. Due to these disparities, the different types of rocks reflect the
electromagnetic energy in different wavelengths, which allows the identification of the spectral
characteristics of the mineralogy of the rock. This is the basis of spectrum-based approaches for
mapping or automated lithological classification. Regarding the classification techniques, machine
learning algorithms (MLAs), a sub-domain of artificial intelligence, aim to automatically extract
information from data, through statistical or non-probabilistic approaches. This classification technique
is divided into two types: (i) unsupervised classification, which classifies the rock type based solely on
the spectral information without being assisted by training zones and without the process resulting in
spectral clustering by an iterative technique [19,22–24]; and (ii) supervised classification, which consists
of assigning groups of identical pixels to classes that correspond to each type of rock by comparing
the pixels with each other and with those whose lithology is known. The advances in supervised
image classification techniques based on MLAs improved geological studies using remote-sensing
data. The classification algorithms that were successfully applied in geological mapping include
the maximum likelihood classifier (MLC) [25,26], naïve Bayes (NB) [27,28], artificial neural networks
(ANNs) [27,29–31], k-nearest neighbors (K-NN) [26,27], and random forests (RF) [29,32]. In this study,
an image classification algorithm considering support vector machines (SVMs) is used as an empirical
method (a data-driven technique). SVMs are supervised learning algorithms, which are considered as
heuristic algorithms, based on statistical learning theory [33]. This method was further developed
in various supervised classification applications during the last decade [34], and was previously
employed in lithological mapping [21,35–38]. This method also proved to be more accurate in the field
of remote sensing than other classification methods [39]. For this study, SVM was applied to perform
an automated lithological classification (lithological mapping) of the region of Souk Arbaa Sahel
belonging to the Sidi Ifni inlier located in southern Morocco (Western Anti-Atlas) using remote-sensing
data, namely Landsat 8 Operational Land Imager (OLI) data and a digital elevation model (DEM)
of ALOS/PALSAR with 12.5-m spatial resolution. Several image pre-processing and processing
techniques were applied to process the Landsat 8 data in order to generate products that should
improve lithological information. SVM performance was evaluated by the accuracy of the classification
on independent validation samples, such as similarity with a regional geological map and Google
Earth® data. This work was carried out in five stages: (i) data preprocessing, (ii) visual interpretation
of different lithological units, (iii) automatic lithological mapping by SVM, (iv) accuracy evaluation,
and (v) assessment.

2. Study Area Description

2.1. Geographical Location

The Sidi Ifni inlier is located about 150 km south of Agadir city, and it is the most western inlier of
the Anti-Atlas (Figure 1B). Its natural boundaries are formed by the Tiznit plain in the north, the Tleta
Akhssas plateau in the east, the Noun wadi in the south, and the Atlantic Ocean in the west.
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Figure 1. (A) Position of the Anti-Atlas chain in the edge of the West African craton; (B) outcrops of
the Proterozoic inliers of the Anti-Atlas; (C) simplified geological map of the Ifni inlier (after Mortaji,
2007; modified).

The Souk Arbaa Sahel study area is in the northern part of the Sidi Ifni inlier (Figure 1C); this region
delimits an area of approximately 50 km2. It is bordered by the meridians 9◦49′30′′ and 9◦58′30′′ west
and the parallels 29◦39′ and 29◦35′30′′ north.

2.2. Geological Context

The Moroccan Anti-Atlas is located in the northern part of the West African craton (WAC)
(Figure 1A), where Proterozoic terranes outcrop in the form of inliers within a Neoproterozoic to
Paleozoic cover [40]. The substratum of Anti-Atlas inliers was structured by two main Precambrian
orogenic events: (i) the Eburnean and (ii) the Pan-African [41–44]. The presently outcropping
Precambrian inliers (Figure 1B) are basement folds that formed during the Variscan deformation [45].
The Sidi Ifni inlier is situated in the western edge of Anti-Atlas. It is composed (Figure 2) of a
Paleoproterozoic granitic basement and a Neoproterozoic cover [46,47] intruded by Neoproterozoic
granites with Rb/Sr ages situated between 689 ± 20 Ma and 541 ± 8 Ma [40,48–51]. The Neoproterozoic
cover constitutes a quarzitic sandstone sedimentary series followed without unconformity with
a volcano-sedimentary series, the bode series belong to a super Ouarzazate group (SOG) [40].
Early Cambrian limestones overcome this series [52].



ISPRS Int. J. Geo-Inf. 2019, 8, 248 4 of 20

Figure 2. Geological map of the Souk Arbaa Sahel (extracted from a 1/100,000 Tiznit geological map;
Notes and M. serv. géol. Maroc n. 360 (1991)).

3. Materials and Methods

A Landsat OLI image and a digital elevation model (DEM) derived from ALOS (Advanced Land
Observing Satellite)/PALSAR (Phased Array Type L-Band Synthetic Aperture Radar) were considered
in this study. Several image processing programs were used, namely QGIS 3.0, SNAP 6.0, and SAGA
GIS 6.3.0. Satellite image pre-processing and processing techniques such as radiometric calibration,
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reflectance conversion, and vegetation suppression were applied to achieve the main purposes of
the study.

3.1. Landsat OLI Data

A cloud-free level L1TP (standard terrain corrected) Landsat OLI image (Path/Row 203/39) was
obtained for free through the United States Geological Survey (USGS) Earth Resources Observation and
Science Center (EROS). It was acquired on 3 February 2018 for the Souk Arbaa Sahel region. The image
map projection is UTM zone 29 N, considering the WGS-84 datum.

The Landsat OLI sensor (multispectral instrument) collects image data in nine bands (visible,
near-infrared, and shortwave infrared bands). These data have a high-performance radiometer
signal-to-noise ratio (SNR), enabling 12-bit data quantization to enable more bits for better land-cover
characterization. Landsat 8 OLI data have 30-m spatial resolution for bands 1 to 7 and band 9. The band
8 (panchromatic) spatial resolution is 15 m (Table 1). Bands 1 and 9 were designed for atmospheric
correction (they were excluded from the lithological classification performed in this study).

Table 1. Spectral and spatial resolution of the Landsat Operational Land Imager (OLI) bands.

Landsat OLI-Bands Spatial Resolution Wavelength (µm)

Band 1—coastal aerosol 30 m 0.43–0.45
Band 2—blue 30 m 0.45–0.51

Band 3—green 30 m 0.53–0.59
Band 4—red 30 m 0.64–0.67

Band 5—near-infrared (NIR) 30 m 0.85–0.88
Band 6—shortwave infrared (SWIR) 1 30 m 1.57–1.65

Band 7—SWIR 2 30 m 2.11–2.29
Band 8—panchromatic 15 m 0.50–0.68

Band 9—cirrus 30 m 1.36–1.38

3.2. Digital Elevation Model

A DEM obtained from ALOS/PALSAR with 12.5-m spatial resolution was used for terrain
characterization (Figure 3). These data were obtained with no cost from the National Aeronautics and
Space Administration (NASA).

Figure 3. Digital elevation model (DEM) of Advanced Land Observing Satellite (ALOS)/Phased Array
Type L-Band Synthetic Aperture Radar (PALSAR).
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3.3. Methods

In the present study, the methodology used consisted of processing Landsat 8 OLI data and
integrating it into the DEM, which provides geomorphological and geological information below
the surface by extracting geomorphometric variables (e.g., slope, curvature, and surface roughness),
in order to generate products with better lithological information. The local morphometric terrain
parameters of slope, curvature, and roughness were derived from the DEM of ALOS/PALSAR.
The Basic Terrain Analysis function of SAGA geographic information system (GIS) software was
used to produce slope and curvature maps using a moving 3 × 3 pixel neighborhood. The surface
roughness was computed using the Terrain Analysis function of the QGIS software using a 3 × 3 pixel
window neighborhood. The SVM’s performance was assessed by the accuracy of the classification
on independent test samples. Figure 4 illustrates the methodology followed in a sequence diagram.
QGIS and SNAP were used for data pre-processing (layer stack, subset, radiometric calibration, surface
reflectance conversion, vegetation suppression, and geomorphometric variables). SAGA GIS was also
used in the classification step.

Figure 4. Flowchart of the lithological classification process employed in this study.

3.4. Pre-Processing of Remote-Sensing Data

3.4.1. Radiometric Calibration and Reflectance Conversion

Landsat-8 OLI image bands were converted from digital format (DN) to radiance (Lλ) and
top-of-atmosphere (TOA) reflectance (ρλ) according to Equations (1) and (2), respectively. We followed
the methodology summarized on the USGS website [53].

Lλ =

(
LMAX − LMIN

Qcalmax −Qcalmin

)
(Qcal −Qcalmin) + LMIN, (1)

ρλ =

(
π ∗ Lλ ∗ d2

ESUNλ ∗ cosθ

)
, (2)

where λ is the band number, L is the spectral radiance at the sensor aperture, LMAX is the spectral
radiance that is scaled to Qcalmax, LMIN is the spectral radiance that is scaled to Qcalmin, Qcalmax is the



ISPRS Int. J. Geo-Inf. 2019, 8, 248 7 of 20

maximum quantized calibrated pixel value (corresponding to LMAX) in DN (65535), Qcalmin is the
minimum quantized calibrated pixel value (corresponding to LMIN) in DN (1), and Qcal is the quantized
calibrated pixel value in DN [54]. All these parameters can be found in the metadata file (.MTL) which
accompanied the Landsat OLI images. Furthermore, ρλ is the TOA reflectance for each band, d2 is
the inverse squared relative earth–sun distance, ESUNλ is the mean exoatmospheric solar irradiance,
and θ is the solar zenith angle in degrees.

3.4.2. Vegetation Suppression Using the Forced Invariance Method

The spectral response of a rock is influenced by several factors, including the heterogeneity of the
chemical and mineralogical composition of the rock at the sub-pixel level, the land-cover type, and,
most importantly, the extent and nature of the vegetation cover. The presence of vegetation cover masks
the spectral signatures of the underlying geological substrate, making remote lithological mapping
more complex [55,56]. To improve geological information, it is, therefore, important to suppress the
spectral response of the overlying vegetation cover. The forced invariance method (FIM) is a means of
enhancing multispectral remotely sensed imagery for lithologic interpretation, proposed by Crippen
and Blom (2001) [57]. It is assumed to decorrelate the vegetative component of the total signal on a
pixel-by-pixel basis for each band by computing the relationship of each input band with the vegetation
index. It is based on information from red and near-infrared bands of the sensors without requiring
any knowledge of lithological composition of the scene. Figure 5 illustrates the FIM [56,58].

Figure 5. The flowchart of the forced invariance method (FIM).
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The FIM was successfully applied in the geology field using hyper- and multispectral data [58].
The performance of the FIM approach was checked using two criteria: the false color image (by
applying visual analysis) and the normalized difference vegetation index (NDVI). It can be observed
that the original image (Figure 6A) was dominated by vegetation, whereas, in the treated image
(Figure 6B), the red hue was not evident. Another criterion involved using the NDVI. It is apparent
that the NDVI values also decreased considerably by comparing Figure 7A,B.

Figure 6. Comparison of Landsat Operational Land Imager (OLI) image before and after vegetation
suppression (true color composite red (R): 865 nm, green (G): 654.5 nm, blue (B): 561.5 nm).
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Figure 7. Comparison of NDVI values of Landsat OLI image before (A) and after (B) vegetation suppression.

3.5. Training and Testing Samples

The former geological map illustrated (Figure 2) was used to select training and testing samples
for the lithological classes. The training and testing samples corresponding to ten lithological units
were carefully selected based on the texture properties and distributions of these ten lithological units,
as shown in Figure 2. We selected a total of 2980 pixels for the ten lithological units, representing about
1.34% of the whole study area. The training datasets were directly used as input in the SVM classifier.
In addition, according to the geological map (Figure 2), 500 randomly distributed ground-truth points
in the study area were selected as the testing dataset. Table 2 shows the number of training and testing
samples for each of lithological unit.
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Table 2. The training and testing samples for lithological units.

Lithological Unit Training Samples (Pixels) Testing Samples

Silt, alluvium (SA) 396 68
Limestone (L) 228 51

Dolomite, limestone (DL) 456 42
Conglomerate, sandstone, rhyolite (CSR) 386 55

Andesite (A) 377 42
Dolomite (D) 238 59

Granodiorite (G) 455 45
Quartzite (Q) 79 41

Sandstone, lutite, limestone (SLL) 260 45
Ignimbrite (I) 105 52

3.6. Lithological Mapping by SVM

SVMs represent one of the most popular algorithms in the field of machine learning and pattern
recognition [59], which attracted increasing interest in the field of remote sensing [60,61] because of
their ability to successfully manage small sets of learning data, often producing higher classification
accuracy when compared with traditional methods. The success of SVMs is justified by the solid
theoretical foundations that support it. They make it possible to address a wide range of problems,
including classification. SVMs were proposed by Vapnik [33], based on the theory of statistical learning
and the principle of minimizing structural risk. It is intended to solve complicated class distributions
in spectral data [60,61].

SVM is a particularly well-suited method for processing very large datasets. SVM classifiers are
initially two-class linear classifiers, based on a criterion to maximize the separation margin of the two
classes. Indeed, it is a question of determining a hyperplane with a maximum distance to the nearest
learning examples (support vectors). The hyperplane that maximizes this distance, called the “margin”,
is the optimal separator hyperplane. The robustness of SVM classifiers comes from the introduction of
a penalty for classification errors in the criterion to be optimized, a penalty that ensures a better ability
to generalize. In non-separable linear cases, SVM find a hyperplane while incorporating a parameter
C, which adjusts the penalty associated with misclassifying support vectors. High values of C generate
more complex prediction functions in order to misclassify as few support vectors as possible by way of
a high penalty on error [62,63]. The objective function must be modified to incorporate this penalty
term for wide-margined decision boundaries with misclassified support vectors as shown below.

Minimize
‖w‖2 + C

∑N

i=1
εi, (3)

subject to
yi(w.xi + b) ≥ 1− εi, εi > 0, i = 1, . . . , N, (4)

where w is a coefficient vector that determines the orientation of the hyperplane in the feature space, b is
the offset of the hyper plane from the origin, and εi is the positive slack variables which represent the
distance to misclassified support vectors from their respective marginal hyperplanes. For non-linear
cases, SVM uses an implicit transformation of input variables via a kernel function [64,65],

k(xi, xj) = ϕ(xi)ϕ(xj), (5)

which returns the inner product between the positions of pairwise compared input variables (xi and
xj) in variable space. The kernel function allows SVM to handle non-linear relationships efficiently
between classes and variables by projecting samples from the original d-dimensional variable space
into a potentially infinite dimensional kernel space [62]. In this case, the form of the decision function
is written as

f : f (x) = sgn(w.ϕ(x)) + b. (6)
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Kernel function selection is essential to the success of SVM training and classification accuracy.
Several common kernel functions for the SVM include linear kernel (LN), polynomial kernel (PL),
radial basis function (RBF) kernel, and sigmoid kernel (SIG). According to Zhu et al. [66], the most
important advantage of using RBF is that it has good interpolation capabilities. Therefore, in this study,
the kernel function RBF was selected.

SVM performance depends on the kernel parameter choice. For the radial basis function,
the penalty parameter and the gamma kernel width are the two parameters that need to be determined.
The gamma parameter controls the degree of non-linearity of the SVM model, as long as the penalty
parameter controls the level of error to be tolerated in the training data. A large value for penalty
parameters will result in some training errors, while a small value for penalty parameters will generate
a larger margin and, thus, increase the number of training errors [67]. According to Yang [68], RBF-SVM
represents the best kernel type when the penalty parameter is at 100 and the gamma parameter in
the kernel function is the inverse of the band numbers in the input. In the present work, the penalty
parameter was set to 100, and the gamma parameter in the kernel function was the inverse of the band
number of the Landsat OLI DEM dataset, i.e., 0.16 [26,35]. The RBF-SVM was performed in SAGA GIS
6.3.0 software and all data were scaled between −1 and 1 prior to their input into the SVM.

3.7. Lithological Mapping by Artificial Neural Network

ANN is a computer algorithm based on the biological neural system. ANN is widely used to
solve complex problems in different application fields, including pattern recognition, identification,
classification, and control systems. The ANN classifier is an artificial intelligence technique that
attempts to simulate how people classify patterns, learn tasks, and solve problems [69]. It consists of a
number of simple processing units named nodes [70]. The nodes are linked according to a specified
architecture by weighted connections. The ANN classifier in this study contained three layers: an
input layer, a middle layer (i.e., hidden layer), and an output layer. Each layer of the ANN classifier
consists of one or more nodes that are adjusted to obtain the most reasonable output through the
iterative experiment [69]. In this research, a multi-layer feed-forward ANN method was employed
with the Landsat OLI DEM dataset for lithological classification using SAGA GIS 6.3.0 software.
A logistic function of the logarithmic function was used to configurate ANN. The training contribution
threshold and the training momentum field were set at 0.9. The number of hidden layer neurons was 1.
The training rate field and the training root-mean-square (RMS) exit criteria were set to 0.2 and 0.1,
respectively [26].

3.8. Accuracy Evaluation

The classification performance was quantitatively assessed by computing the overall (OA),
user (UA), and producer (PA) accuracies from the confusion matrix and the Kappa coefficient (K) [71].
The OA is the ratio between the total number of correct pixels and the total number of pixels in the
error matrix, whereas the UA includes commission errors and PA includes omission errors related to
individual classes [35,55,72]. The Kappa coefficient is a statistical measure that represents the accord
between classified map and reference data [73]. It considers the possibility of agreements occurring
by chance in a random classification. For this reason, it is considered a more reliable measure of
classification accuracy [72,74]. Kappa values range from 0 to 1, with values close to 1 indicating
little uncertainty in the class identity of a pixel, while values close to 0 indicate high classification
uncertainty. In this study, the test samples were randomly selected according to the visual interpretation
of geological map.



ISPRS Int. J. Geo-Inf. 2019, 8, 248 12 of 20

4. Results

4.1. Training Area Statistics

The average values of all samples for Landsat OLI reflectance for each class are shown in Figure 8.
The average overall reflectance of silt and alluvium was higher than other rock types, while the
average overall reflectance of andesite rocks was lower than other rock types (Figure 8). For the other
classes, the average overall reflectances of the limestone, the sandstone, lutite, and limestone, and the
dolomite and limestone classes were higher than the dolomite, granodiorite, quartzite, and ignimbrite.
The maximum average reflectance registered in the Landsat OLI data for the Souk Arbaa Sahel area
was ~0.39 for the silt and alluvium (SA) class at the 1.57–1.65-µm wavelength region of the Landsat
OLI reflectance data. The minimum average reflectance registered in the ASTER data was ~0.11 for the
andesite class at the 0.53–0.59-µm wavelength region of the Landsat OLI reflectance data (Figure 8).

Figure 8. Average of surface reflectance based on training samples selected from Landsat OLI data for
ten lithological units.

4.2. Lithological Classification Map

The Landsat OLI lithological classification map after the post-classification processing is shown in
Figure 9. Post-classification processing was conducted to improve heterogeneity in the region of the
same type of rock by eliminating noisy pixels. We used as a post-classification processing technique
a majority filter of 3 × 3 pixels in the classification image to filter out parasitic pixels. More details
were provided in the Landsat OLI data classification result. From the perspective of the overall visual
effect, the Landsat OLI lithological classification map was more similar to the geological map (Figure 2).
The ten lithological units defined were distinguished well.

In comparison with the geological map of Tiznit 1/100,000 (Figure 2), the map of the lithological
classification obtained via the SVM method applied to the Landsat OLI image showed some agreement.
Facies spread over large areas show this agreement well, while there were no smaller facies, such as
the large quartz vein. At the level of the wadis, river sediments were detected, corresponding to the
leaching products of the andesitic facies crossed by the wadis, which crossed conglomerate, sandstone,
and rhyolite formations and areas with silt and alluvial leaching deposits on the edges of the wadis
crossing the dolomites.
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Figure 9. Lithological classification map datasets of the OLI DEM dataset after post-classification processing.

4.3. Classification Accuracy

To evaluate the classification accuracy, samples from the geological map of the study area were
selected. Five hundred (500) samples from the reference map were randomly selected to compute the
classification accuracy.

Table 3 shows the PA, UA, OA, and Kappa coefficient (K) for the lithology classification using
the SVM method. The OA and the Kappa coefficient were 85% and 83.29%, respectively. The OA
was estimated using the contingency error matrix to assess validation (Table 3). The PA and UA for
all the lithological units identified are illustrated in Figure 10A. The limestone (L), sandstone, lutite,
and limestone (SLL), silt and alluvium (SA), and quartzite classes presented the best PA (>90.00%),
and the limestone (L) and conglomerate, sandstone, and rhyolite (CSR) classes showed the best UA
(>96.00%). Lower PA classification was achieved for the conglomerate, sandstone, and rhyolite (CSR)
(72.60%) class, while the lowest UA obtained was 68.29%, for the quartzite (Q) class. According
to Figure 10B, the lithological classes of dolomite and limestone (DL), conglomerate, sandstone,
and rhyolite (CSR), limestone (L), and ignimbrite (I) presented the highest Kappa coefficients with
97.34%, 95.74%, 95.65%, and 93.47%, respectively, while quartzite presented the lowest Kappa coefficient
with 66.2%.

Table 3. Error matrix and statistical measures for support vector machine (SVM). The error matrix was
summarized based on the statistical measures: producer accuracy (PA), user accuracy (UA), overall
accuracy (OA), and the Kappa coefficient (κ).

Reference

SA L DL CSR A D G Q SLL I
∑

PA UA

Silt, Alluvium (SA) 49 0 4 4 2 0 7 0 1 1 68 90.47% 72.06%
Limestone (L) 1 49 1 0 0 0 0 0 0 0 51 100% 96.08%

Dolomite, Limestone (DL) 0 0 41 0 0 1 0 0 0 0 42 77.36% 97.62%
Conglomerate, Sandstone, Rhyolite (CSR) 0 0 0 53 2 0 0 0 0 0 55 72.60% 96.36%

Andesite (A) 0 0 0 13 29 0 0 0 0 0 42 87.88% 69.05%
Dolomite (D) 0 0 7 0 0 49 0 0 3 0 59 89.09% 83.05%

Granodiorite (G) 0 0 0 0 0 0 39 3 0 3 45 76.74% 86.67%
Quartzite (Q) 3 0 0 1 0 0 4 28 0 5 41 90.32% 68.29%

Sandstone, Lutite, Limestone (SLL) 1 0 0 0 0 5 0 0 39 0 45 90.70% 86.67%
Ignimbrite (I) 0 0 0 2 0 0 1 0 0 49 52 84.48% 94.23%∑

54 49 53 73 33 55 51 31 43 58 500 OA 85%
K 83.29%
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Figure 10. The lithological classification accuracies of each class in the OLI DEM dataset using the
radial basis function (RBF) support vector machine (SVM) method: (A) producer accuracy (PA) and
user accuracy (UA); (B) the Kappa coefficient of each class.

5. Discussion

MLAs are attracting increasing interest in the field of remote sensing as an approach to geological
mapping. Although multispectral and hyperspectral data are widely used for lithological discrimination
and classification, it is difficult to obtain appropriate data for geological mapping because of the high
cost and complexity of the treatment [26]. Therefore, the combination of multispectral data with
textural data and lithological classification characteristics is very effective in achieving good results.

In this research, SVM was evaluated for lithological classification in an area with moderate
vegetation coverage. It was shown that the SVM method achieved good results in most rock units
in the study area, apart from the quartz vein. The SVM allowed the levels of the wadis and river
sediments to be detected, corresponding to the leaching products of the andesitic facies crossed by the
wadis, which crossed the conglomerate, sandstone, and rhyolite formations and areas with silt and
alluvial leaching deposits on the edges of the wadis crossing the dolomites.

The Landsat OLI and DEM data have a major role in lithological classification. As DEM defines
topographic characteristics, which is a good indicator of rock types, the Landsat-8 OLI data contain
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more detailed information on texture through the image pixel resize technique. This paper analyzed
the performance of automatic classification of lithological units using the SVM technique from the point
of view of the lithological map and the accuracy of classification of lithological units. The technique
employed showed good results in general, except for the quartz vein. It should also be noted that it
gave better results than the ANN. According to Figure 11, the ANN method showed somewhat lower
consistency with the geological map, especially in limestone, ignimbrite, and dolostone units.

Figure 11. Lithological classification map datasets of OLI DEM using an artificial Neural network
(ANN) after post-classification processing.

Also, Figure 12 proves that the UA obtained for the RBF-SVM technique was higher than the UA
obtained for the ANN technique.

Figure 12. The UA of each class of the OLI DEM dataset.

It should be noted that the SVM and ANN were not able to detect a large quartz vein. This can be
attributed to several factors: vegetation cover and weathering, atmospheric effects, heterogeneity of the
chemical and mineralogical composition of the rock at the sub-pixel level, spectral and spatial resolution
of the image, and soil presence. All these factors affect the spectral responses of the lithological units
even after rigorous pre-processing tasks. The set of samples is also an important factor affecting the
accuracy of the classification. The selection of training samples through the geological map of the
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visual interpretation had some uncertainty. Moreover, the test samples were selected randomly; thus,
the sample from the same geographical location could correspond to diverse classification results.

In addition, the task of determining different lithological units using remote-sensing techniques
is difficult because of the spectral similarity resulting from the similar chemical and mineralogical
compositions of the different lithological units [35,38]. Figure 8 shows that most mineral absorption
features were located in the shortwave infrared (SWIR) wavelengths. The spectral signature of all rocks
units gradually increased from the visible region toward the near-infrared region, ranging between
0.55 µm and 0.86 µm. The rocks reflected both in the near-infrared region and the first shortwave
infrared regions. The spectral signature of all rocks (expect the granodiorite and the andesite rocks unit)
increased from the near-infrared region toward the first shortwave infrared region ranging between
0.86 µm and 1.6 µm. The reflectance gradually decreased in the second shortwave infrared region
ranging between 1.6 µm and 2.20 µm. The hydroxyl and ferrous oxide forced all classes to strong
absorption in band 7. The spectral reflectance of the silt and alluvium unit had a higher reflectance
than other rock types in all bands due to the effect of the high reflectance of various clay minerals
(Figure 8). The andesite rocks were darker than other rock types and had a lower reflectance than other
rock types in all bands due to plagioclase feldspar mineral content. The granodiorite classes had high
absorptions in band 6 of the Landsat OLI reflectance data because they involved quartz.

Generally, the method used in this study can be used to produce lithological maps of remote areas,
as well as to update existing lithological maps. This approach is considered to be fast when compared
to geological mapping in the field, saving considerable time and resources.

6. Conclusions

SVM is an advanced MLA, based on the theory of statistical learning. This supervised classification
method is used to obtain optimal solutions to classification problems. However, this method is not
widely used for lithologic mapping using moderate-resolution remote sensing data. In this research,
we assessed SVM for lithological mapping of the region of the Souk Arbaa Sahel belonging to the
Sidi Ifni inlier located in southern Morocco (Western Anti-Atlas) using Landsat 8 OLI data and the
DEM of ALOS/PALSAR. Several image processing techniques were used to enhance information
relevant to lithological discrimination including, radiometric calibration, reflectance conversion,
and vegetation suppression.

The results of this study indicated that the OA of the classification of the lithological map was
85% and the Kappa coefficient was 83.29%. This high accuracy confirms the capability of SVM as a
supervised machine learning algorithm for lithological mapping using multispectral imagery. Also,
the SVM approach provided better results than the ANN, given the hyperparameters currently used in
this study (the OA and Kappa coefficient were 68.40% and 65.27%, respectively).

In conclusion, SVM is an effective algorithm for remote predictive mapping for remote areas,
as well as for updating existing lithological maps. This lithological classification technique provides
significant time and resource savings over geological mapping in the field. In our future research,
we plan to combine pixel- and object-oriented classification using multispectral images to improve the
lithological classification.
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